2024牛客多校2B MST
Problem
Sajin最近深入研究了最小生成树,现在他已经掌握了MST的算法。他渴望通过一系列查询来评估您对最小生成树概念的掌握程度。
您将面临一个加权无向图,该图包含没有任何自环的 \(n\) 个顶点和 \(m\) 条边。
Sajin提出 \(q\) 询问。对于每个顶点集,都给出了一个顶点集 \(S\) 。您的目标是确定 \(S\) 的诱导子图(induced subgraph)并找到其最小生成树的权重。如果 \(S\) 的诱导子图断开,则输出-1。
图的诱导子图是另一个图,由图的顶点子集和原始图中的所有边组成,连接该子集中的顶点对。即,对于图 \(G=(V,E)\) ,给定 \(V^\prime\) ,则有 \(E^\prime=\{(u,v) \mid u,v\in V^\prime,(u,v)\in E\}\),诱导子图为 \(G^\prime=(V^\prime,E^\prime)\)。
\(2\le n\le 10^5,1\le m,q\le10^5\)
\(1 \le |S_i|\le n,\sum S_i\le 10^5\)